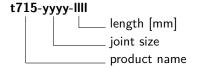
t715 SERIES

DOCKING SHAFT

DESCRIPTION


The t715 docking shaft complements the automatic docking systems tDock1x00. This ensures fast automatic docking of engines for quality control and production testing.

The advantage is the high alignment capability of CV joints with the high reliability of a spline connection.

This unique docking system enables efficient docking and guarantees extremely smooth running of the test bed.

NAMING

The product is named according to the following convention:

Example: t715-CV15-0303

OPERATING RANGE

Torque: up to 2500 Nm Speed: up to 10000 rpm

BENEFITS

- low-noise, low-vibration and low-maintenance
- compact and modular design
- reduced docking time
- outstanding vibration decoupling
- integrated longitudinal and angular compensation
- precise concentricity

FUNCTION

The female spline connector is mounted on the engine in the setup area while the male spline is fixed on the docking shaft.

During the docking procedure, the docking system slides with the shaft easily into the female spline connector.

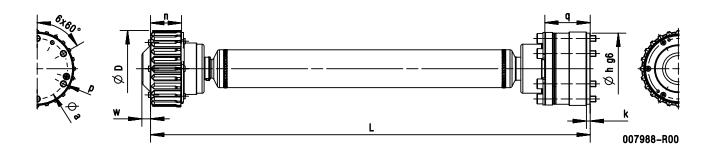
During operation, the articulated assembly allows axial, radial and angular movement without interfering with the test bed.

t715 SERIES

DOCKING SHAFT

Shaft	Joint	T _{max} [Nm]	n _{max} [rpm]	X [mm]	G [-]	lpha [°]	$artheta_{min}$ [°C]	$artheta_{\sf max}$ [°C]
t715	CV10	1300	10000	±12	6.3	±10	-40	+80
	CV15	2500		± 16				

 T_{max} - Maximum torque


 $\begin{array}{ll} n_{max} \ - \ Maximum \ speed \\ X & - \ Maximum \ longitudinal \ compensation \end{array}$

G - Balance quality

 α - Maximum angular displacement

 ϑ_{\min} - Minimum operating temperature

 $\vartheta_{\rm max}$ - ${\sf Maximum\ operating\ temperature}^1$

Shaft	Joint	D	а	h (g6)	k	n	р	q	w
		[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[mm]	[mm]
t715	CV10	101	80	94	5.5	40	M8	60.0	11.5
	CV15	141	94	108	5.0	74	M10	57.5	14.4

The length L is dependent on the application and is limited by the type of design and maximum speed.

Higher speeds are available on request.

2019-08-21 < 04 da3 bec212 a7 b0954 d2 bbbf46 d1 a812 c8 d4673 c > DS EN 00

 $^{^1\}text{The t715}$ can be operated at up to 100°C for a short time.